5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx &=\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx
\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx = \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx
&=x^2-2x^\frac{-1}{2}dx  
 
&=\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C
&=x^2-2x^\frac{-1}{2}dx = \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C
 
&=\frac{1}{3}x^3-4\sqrt{x}+C
&=\frac{1}{3}x^3-4\sqrt{x}+C


\end{align}
\end{align}
</math>
</math>

Revision as of 19:08, 26 August 2022