6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
\begin{align} | \begin{align} | ||
\sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}{2}}{1} \cdot \sqrt{3}}= \frac{2\sqrt{3}}{3} \\[2ex] | \sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}{{2}}{1} \cdot \sqrt{3}}= \frac{2\sqrt{3}}{3} \\[2ex] | ||
\cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= -\frac{{2}}{1} = -2 \\[2ex] | \cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= -\frac{{2}}{1} = -2 \\[2ex] |
Revision as of 09:29, 27 August 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}{{2}}{1} \cdot \sqrt{3}}= \frac{2\sqrt{3}}{3} \\[2ex] \cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= -\frac{{2}}{1} = -2 \\[2ex] \tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{\cancel 2}}{-\frac{{1}}{\cancel 2}} \cdot \cancel{2} = \frac{\sqrt{3}}{-1} = -\sqrt{3} & \cot{\left(\frac{8\pi}{3}\right)} &= \frac{-\frac{1}{\cancel 2}} {\frac{\sqrt{3}}{\cancel 2}} \cdot \cancel 2 = \frac{-1}{\sqrt{3}} \cdot \sqrt{3}= \frac{-\sqrt{3}}{3} \\[2ex] \end{align} }