5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
17)<math>\int{}{}1+tan^{2}x*dx = \frac{d}{dx}(tan(x))</math>
17. \begin{align}


<math>\frac{d}{dx}(tan(x))=\frac{d}{dx}\left(\frac{sin(x)}{cos(x)}\right)=\frac{cos^{2}x-(-(sin(x))(sin(x))}{cos^{2}(x)}</math>
&= \int_{}^{}1+tan^2 x\,dx \\[2ex]
 
&= \int1+\frac{sin^2x}{cos^2x}\,dx \\[2ex]
 
&= \int\frac{cos^2x+sin^2x}{cos^2x}\,dx \\[2ex]
<math>=\frac{cos^{2}x+sin^2(x))}{cos^{2}(x)}=\frac{cos^{2}x}{cos^{2}(x)}+\frac{sin^{2}x}{cos^{2}(x)}</math>
&= \cos^2x+sin^2x=1, thus
 
&= \int\frac{1}{cos^2x}\,dx \\[2ex]
 
&= \int\sec^2x\,dx \\[2ex]
<math>=1+tan^2(x)</math>
&= tanx+C\
 
\end{align}
 
[[5.3 The Fundamental Theorem of Calculus/1|1]]
[[5.3 The Fundamental Theorem of Calculus/3|3]]
[[5.3 The Fundamental Theorem of Calculus/5|5]]
[[5.3 The Fundamental Theorem of Calculus/7|7]]
[[5.3 The Fundamental Theorem of Calculus/8|8]]
[[5.3 The Fundamental Theorem of Calculus/9|9]]
[[5.3 The Fundamental Theorem of Calculus/10|10]]
[[5.3 The Fundamental Theorem of Calculus/11|11]]
[[5.3 The Fundamental Theorem of Calculus/13|13]]
[[5.3 The Fundamental Theorem of Calculus/15|15]]
[[5.3 The Fundamental Theorem of Calculus/17|17]]
[[5.3 The Fundamental Theorem of Calculus/19|19]]
[[5.3 The Fundamental Theorem of Calculus/20|20]]
[[5.3 The Fundamental Theorem of Calculus/21|21]]
[[5.3 The Fundamental Theorem of Calculus/23|23]]
[[5.3 The Fundamental Theorem of Calculus/25|25]]
[[5.3 The Fundamental Theorem of Calculus/27|27]]
[[5.3 The Fundamental Theorem of Calculus/28|28]]
[[5.3 The Fundamental Theorem of Calculus/29|29]]
[[5.3 The Fundamental Theorem of Calculus/31|31]]
[[5.3 The Fundamental Theorem of Calculus/33|33]]
[[5.3 The Fundamental Theorem of Calculus/35|35]]
[[5.3 The Fundamental Theorem of Calculus/37|37]]
[[5.3 The Fundamental Theorem of Calculus/39|39]]
[[5.3 The Fundamental Theorem of Calculus/41|41]]
[[5.3 The Fundamental Theorem of Calculus/53|53]]

Revision as of 03:44, 29 August 2022

17. \begin{align}

&= \int_{}^{}1+tan^2 x\,dx \\[2ex] &= \int1+\frac{sin^2x}{cos^2x}\,dx \\[2ex] &= \int\frac{cos^2x+sin^2x}{cos^2x}\,dx \\[2ex] &= \cos^2x+sin^2x=1, thus &= \int\frac{1}{cos^2x}\,dx \\[2ex] &= \int\sec^2x\,dx \\[2ex] &= tanx+C\ \end{align}