5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
17 | 17. \begin{align} | ||
&= \int_{}^{}1+tan^2 x\,dx \\[2ex] | |||
&= \int1+\frac{sin^2x}{cos^2x}\,dx \\[2ex] | |||
&= \int\frac{cos^2x+sin^2x}{cos^2x}\,dx \\[2ex] | |||
&= \cos^2x+sin^2x=1, thus | |||
&= \int\frac{1}{cos^2x}\,dx \\[2ex] | |||
&= \int\sec^2x\,dx \\[2ex] | |||
&= tanx+C\ | |||
\end{align} | |||
Revision as of 03:44, 29 August 2022
17. \begin{align}
&= \int_{}^{}1+tan^2 x\,dx \\[2ex] &= \int1+\frac{sin^2x}{cos^2x}\,dx \\[2ex] &= \int\frac{cos^2x+sin^2x}{cos^2x}\,dx \\[2ex] &= \cos^2x+sin^2x=1, thus &= \int\frac{1}{cos^2x}\,dx \\[2ex] &= \int\sec^2x\,dx \\[2ex] &= tanx+C\ \end{align}