5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
17. \begin{align}
17. \begin{align}


&= \int_{}^{}1+tan^2 x\,dx \\[2ex]
<math>\int_{}^{}1+tan^2 x\,dx <math>
&= \int1+\frac{sin^2x}{cos^2x}\,dx \\[2ex]
<math>\int1+\frac{sin^2x}{cos^2x}\,dx<math>
&= \int\frac{cos^2x+sin^2x}{cos^2x}\,dx \\[2ex]
<math>\int\frac{cos^2x+sin^2x}{cos^2x}\,dx<math>
&= \cos^2x+sin^2x=1, thus
<math>\cos^2x+sin^2x=1<math>, thus
&= \int\frac{1}{cos^2x}\,dx \\[2ex]
<math>\int\frac{1}{cos^2x}\,dx<math>
&= \int\sec^2x\,dx \\[2ex]
<math>\int\sec^2x\,dx<math>
&= tanx+C\
<math>tanx+C\<math>
\end{align}
\end{align}

Revision as of 03:47, 29 August 2022

17. \begin{align}

<math>\int_{}^{}1+tan^2 x\,dx <math> <math>\int1+\frac{sin^2x}{cos^2x}\,dx<math> <math>\int\frac{cos^2x+sin^2x}{cos^2x}\,dx<math> <math>\cos^2x+sin^2x=1<math>, thus <math>\int\frac{1}{cos^2x}\,dx<math> <math>\int\sec^2x\,dx<math> <math>tanx+C\<math> \end{align}