5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
17.
17.


<math>\int1+tan^2 x\,dx <math>
<math>\int1+tan^2 x*dx<math>
<math>\int1+\frac{sin^2x}{cos^2x}\,dx<math>
<math>\int1+\frac{sin^2x}{cos^2x}*dx<math>
<math>\int\frac{cos^2x+sin^2x}{cos^2x}\,dx<math>  
<math>\int\frac{cos^2x+sin^2x}{cos^2x}\*dx<math>  
<math>\cos^2x+sin^2x=1<math>
<math>\cos^2x+sin^2x=1<math>
<math>\int\frac{1}{cos^2x}\,dx<math>
<math>\int\frac{1}{cos^2x}*dx<math>
<math>\int\sec^2x\,dx<math>
<math>\int\sec^2x\*dx<math>
<math>tanx+C\<math>
<math>tanx+C\<math>

Revision as of 05:45, 29 August 2022

17.

<math>\int1+tan^2 x*dx<math> <math>\int1+\frac{sin^2x}{cos^2x}*dx<math> <math>\int\frac{cos^2x+sin^2x}{cos^2x}\*dx<math> <math>\cos^2x+sin^2x=1<math> <math>\int\frac{1}{cos^2x}*dx<math> <math>\int\sec^2x\*dx<math> <math>tanx+C\<math>