5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\int\limits_{-1}^{2}(x-2|x|)dx | \int\limits_{-1}^{2}(x-2|x|)dx | ||
&= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x)) | &= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx | ||
</math> | </math> |
Revision as of 16:04, 30 August 2022
Failed to parse (syntax error): {\displaystyle \int\limits_{-1}^{2}(x-2|x|)dx &= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx }