5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int\limits_{-1}^{2}(x-2|x|)dx \\[ | \int\limits_{-1}^{2}(x-2|x|)dx \\[1ex] | ||
&= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] | &= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] |
Revision as of 16:08, 30 August 2022