5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
&= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] | &= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] | ||
&= \left(\frac{1}{2} {x^2} + x^2 \right) | &= \left(\frac{1}{2} {x^2} + x^2 \right)|\bigg | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 16:12, 30 August 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int\limits_{-1}^{2}(x-2|x|)dx \\[1ex] &= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] &= \left(\frac{1}{2} {x^2} + x^2 \right)|\bigg \end{align} }