6.2 Trigonometric Functions: Unit Circle Approach/19: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
\sin{(t)} &= -\frac{1}{3} & \csc{(t)} &= -\frac{1}{-\frac{1}{3}} = \frac{1}{1}\cdot-\frac{3}{1} = -3\\[2ex] | \sin{(t)} &= -\frac{1}{3} & \csc{(t)} &= -\frac{1}{-\frac{1}{3}} = \frac{1}{1}\cdot-\frac{3}{1} = -3\\[2ex] | ||
\cos{(t)} &= \frac{2\sqrt{2}}{3} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | \cos{(t)} &= \frac{2\sqrt{2}}{3} & \sec{(t)} &= \frac{1}{\frac{2\sqrt{2}}{3}} = \frac{1}{1}\cdot\frac{3}{2\sqrt{2}} = \frac{3}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=\frac{3\sqrt{2}}{4}\\[2ex] | ||
\tan{(t)} &= \frac{-\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = -\frac{1}{3}\cdot\frac{3}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{4} & \cot{(t)} &= \frac{1}{-\frac{1}{3}} = \frac{1}{1}\cdot-\frac{3}{1} = -3 \\[2ex] | \tan{(t)} &= \frac{-\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = -\frac{1}{3}\cdot\frac{3}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{4} & \cot{(t)} &= \frac{1}{-\frac{1}{3}} = \frac{1}{1}\cdot-\frac{3}{1} = -3 \\[2ex] |
Revision as of 16:59, 30 August 2022