5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
<math> = \left(\frac{1}{2} {x^2} + x^2 \right)\bigg|_{-1}^{0} + \left(\frac{1}{2} {x^2} - x^2 \right)\bigg|_{0}^{2} | <math> = \left(\frac{1}{2} {x^2} + x^2 \right)\bigg|_{-1}^{0} + \left(\frac{1}{2} {x^2} - x^2 \right)\bigg|_{0}^{2} | ||
0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 | 0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 | ||
= \left(\frac{1}{2} + 1\right) + \left(\frac{1}{2} (4) - 4\right) | |||
</math> | </math> |
Revision as of 18:53, 30 August 2022
Failed to parse (syntax error): {\displaystyle \int\limits_{-1}^{2}(x-2|x|)dx = \int\limits_{-1}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] }