5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
\int\limits_{-1}^{2}(x-2|x|)dx = \int\limits_{-1}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[1ex]
\int\limits_{-1}^{2}(x-2|x|)dx = \int\limits_{-1}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[1ex]


&= \left(\frac{1}{2} {x^2} + x^2 \right)\bigg|_{-1}^{0} + \left(\frac{1}{2} {x^2} - x^2 \right)\bigg|_{0}^{2} \\[2ex]
&= \left(\frac{1}{2} {x^2} + x^2 \right)\bigg|_{-1}^{0} + \left(\frac{1}{2} {x^2} - x^2 \right)\bigg|_{0}^{2} \\[1ex]


&= 0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 \\[2ex]
&= 0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 \\[1ex]


&= \left(\frac{1}{2} + 1\right) + \left(\frac{1}{2} 4) - 4\right) \\[2ex]
&= \left(\frac{1}{2} + 1\right) + \left(\frac{1}{2} 4) - 4\right) \\[1ex]
\end{align}
\end{align}
</math>
</math>

Revision as of 19:01, 30 August 2022