5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx </math>
<math>
\begin{align}
\int\left({}^{}\frac{x^3-2\sqrt{x}}{x}\right)dx &= \int\left({}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx


<math>
&= \left x^2-2x^\frac{-1}{2}\right)dx =  
\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx =  
 
</math>
&= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C &= \frac{1}{3}x^3-4\sqrt{x}+ C
<math>
 
\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C
 
\end{align}
</math>
</math>

Revision as of 19:05, 30 August 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int\left({}^{}\frac{x^3-2\sqrt{x}}{x}\right)dx &= \int\left({}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx &= \left x^2-2x^\frac{-1}{2}\right)dx = &= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C &= \frac{1}{3}x^3-4\sqrt{x}+ C \end{align} }