5.5 The Substitution Rule/43: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math>\begin{align} \int\frac{1+x}{1+x^2}dx &=\int(\frac{1}{1+x^2}+\frac{x}{1+x^2})dx\\[2ex]&=\int\frac{1}{1+x^2}dx+\int\frac{x}{1+x^2}dx\\[2ex]&=tan^{-1}(x) + \frac{1}{2}\int\frac{1}{u}du\\[2ex]&= tan^{-1}(x)+\ln|{1+x}|+c <\math>\end{align}") |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\begin{align} | <math>\begin{align} | ||
\int\frac{1+x}{1+x^2}dx &=\int(\frac{1}{1+x^2}+\frac{x}{1+x^2})dx\\[2ex]&=\int\frac{1}{1+x^2}dx+\int\frac{x}{1+x^2}dx\\[2ex]&=tan^{-1}(x) + \frac{1}{2}\int\frac{1}{u}du\\[2ex]&= tan^{-1}(x)+\ln|{1+x}|+c | \int\frac{1+x}{1+x^2}dx &=\int(\frac{1}{1+x^2}+\frac{x}{1+x^2})dx\\[2ex]&=\int\frac{1}{1+x^2}dx+\int\frac{x}{1+x^2}dx\\[2ex]&=tan^{-1}(x) + \frac{1}{2}\int\frac{1}{u}du\\[2ex]&= tan^{-1}(x)+\ln|{1+x}|+c | ||
\end{align}</math> |
Revision as of 19:20, 2 September 2022