5.5 The Substitution Rule/69: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> \int_{e}^{e^4} \left(\frac{dx}{x\sqrt{\ln(x)}}\right) &= \int_{e}^{e^4} \left(\frac{1}{x} | <math> \int_{e}^{e^4} \left(\frac{dx}{x\sqrt{\ln(x)}}\right) &= \int_{e}^{e^4} \left(\frac{1}{x} /frac{1}{\sqrt(\ln(x))}\right) dx | ||
</math> | </math> |
Revision as of 15:43, 6 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{e}^{e^4} \left(\frac{dx}{x\sqrt{\ln(x)}}\right) &= \int_{e}^{e^4} \left(\frac{1}{x} /frac{1}{\sqrt(\ln(x))}\right) dx }