5.5 The Substitution Rule/69: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) | |||
</math> | |||
<math> | |||
\begin{align} | \begin{align} | ||
\ | u &= e^z + z \\[2ex] | ||
du &= e^z +1 \\[2ex] | |||
/end{align} | |||
</math> | |||
New upper limit: <math> \1 = e^1 + 1 = e + 1 </math><br> | |||
New lower limit: <math> 0 = e^0 + 0 = 1 </math> | |||
<math> | |||
\begin{align} | |||
\int_{1}^{e+1} \left((e^z +1) (\frac{1}{e^z +z}) \right) | |||
</math> | </math> |
Revision as of 15:52, 6 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} u &= e^z + z \\[2ex] du &= e^z +1 \\[2ex] /end{align} }
New upper limit: Failed to parse (syntax error): {\displaystyle \1 = e^1 + 1 = e + 1 }
New lower limit:
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{1}^{e+1} \left((e^z +1) (\frac{1}{e^z +z}) \right) }