5.5 The Substitution Rule/69: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:
<math>  
<math>  
\begin{align}
\begin{align}
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) &= \int_{1}^{e+1} \left(\frac{1}{u}\right)du
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right)
&= \int_{1}^{e+1} \left(\frac{1}{u}\right)du
&= \left(\ln (\abs(u)) \right) |bigg


\end{align}
\end{align}
</math>
</math>

Revision as of 15:58, 6 September 2022

New upper limit:
New lower limit:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) &= \int_{1}^{e+1} \left(\frac{1}{u}\right)du &= \left(\ln (\abs(u)) \right) |bigg \end{align} }