5.3 The Fundamental Theorem of Calculus/10: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
g(r)=\int_{0}^{r}\sqrt{x^2+4}\,dx | g(r)=\int_{0}^{r}\sqrt{x^2+4}\,dx | ||
</math> | |||
<math> | |||
\frac{d}{dr}(g(r)) = \frac{d}{dr}\left[\int_{0}^{r}\sqrt{x^2+4}\,dx\right] = | \frac{d}{dr}(g(r)) = \frac{d}{dr}\left[\int_{0}^{r}\sqrt{x^2+4}\,dx\right] = | ||
1\cdot\sqrt{(r)^2+4} - 0\cdot\sqrt{(0)^2+4} =\sqrt{r^2 + 4} | |||
1\cdot\sqrt{(r)^2+4} - 0\cdot\sqrt{(0)^2+4} | |||
=\sqrt{r^2 + 4 | |||
</math> | </math> |
Revision as of 20:03, 6 September 2022