5.3 The Fundamental Theorem of Calculus/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math>y=\int_{1-3x}^{1}\frac{u^3}{1+u^2} du</math> | ||
<math> | <math> | ||
\frac{d}{dx}( | \frac{d}{dx}(y)=\frac{d}{dx}\left(\int_{1-3x}^{1}\frac{u^3}{(1+u^2)} du\right) = (0)\cdot\frac{(1)^3}{(1+(1)^2)} | ||
-(-3)\cdot\frac{(1-3x)^3}{(1+(1-3x)^2)} | -(-3)\cdot\frac{(1-3x)^3}{(1+(1-3x)^2)} | ||
Line 11: | Line 11: | ||
<math> | <math> | ||
\text{Therefore, } | \text{Therefore, } y' = \frac{3(1-3x)^3}{1+(1-3x)^2} | ||
</math> | </math> |
Revision as of 20:30, 6 September 2022