5.3 The Fundamental Theorem of Calculus/27: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:


\int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx
\int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx
= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}</math><br>
= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}
= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right)</math><br>
= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right)
= 4+\frac{2^7}{7}</math><br>
= 4+\frac{2^7}{7}
= \frac{156}{7}
= \frac{156}{7}


\end{align}
\end{align}
</math>
</math>

Revision as of 21:03, 6 September 2022