5.3 The Fundamental Theorem of Calculus/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
\int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx | \int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx | ||
= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} | = \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} | ||
= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right) | = \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right) | ||
= 4+\frac{2^7}{7} | = 4+\frac{2^7}{7} | ||
= \frac{156}{7} | = \frac{156}{7} | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 21:03, 6 September 2022