5.3 The Fundamental Theorem of Calculus/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\ | \int_0^2 x(2+x^5)\,dx = \int_0^2 (2x+x^6)\,dx &= \int_0^2 (2x+x^6)\,dx \\[2ex] | ||
&= \left(\frac{2x^ | &= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex] | ||
&= \left((2)^2 | |||
&= 4+\frac{2^7}{7} | &= \left((2)^2-\frac{(2)^7}{7}\right)+\left((0)^2+\frac{(0)^7}{7}\right) \\[2ex] | ||
&= \frac{156}{7} | |||
&= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex] | |||
&= \frac{156}{7} | |||
\end{align} | \end{align} | ||
Revision as of 21:15, 6 September 2022
<math> \begin{align}
\int_0^2 x(2+x^5)\,dx = \int_0^2 (2x+x^6)\,dx &= \int_0^2 (2x+x^6)\,dx \\[2ex]
&= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex]
&= \left((2)^2-\frac{(2)^7}{7}\right)+\left((0)^2+\frac{(0)^7}{7}\right) \\[2ex]
&= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex] &= \frac{156}{7}
\end{align}