5.3 The Fundamental Theorem of Calculus/41: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 15: Line 15:


\int_{0}^{\pi}f(x)\,dx &= \int_{0}^{\frac{\pi}{2}}f(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}f(x)\,dx = \int_{0}^{\frac{\pi}{2}}\sin(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}\cos(x)\,dx \\[2ex]
\int_{0}^{\pi}f(x)\,dx &= \int_{0}^{\frac{\pi}{2}}f(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}f(x)\,dx = \int_{0}^{\frac{\pi}{2}}\sin(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}\cos(x)\,dx \\[2ex]
&= -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} = \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] + \left[\sin(\pi)-\sin\left(\frac{\pi}{2}\right)\right] \\[2ex]
&= -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} \\[2ex]
&= \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] + \left[\sin(\pi)-\sin\left(\frac{\pi}{2}\right)\right] \\[2ex]
&= 0+1+0-1 = 0
&= 0+1+0-1 = 0


\end{align}
\end{align}
</math>
</math>

Revision as of 22:05, 6 September 2022