5.5 The Substitution Rule/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
du &=3{z}^2dz \\[2ex] | du &=3{z}^2dz \\[2ex] | ||
\frac{1}{3}du &={z}^2dz \\[2ex] | \frac{1}{3}du &={z}^2dz \\[2ex] | ||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int\{u}^-\frac{1}{3}du \\[2ex] | |||
&= -\frac{1}{3}(\frac{3}{2}{u}^\frac{2}{3}) = \frac{3}{6}{u}^2/3 \\[2ex] | |||
&= -\cos{(u)} + C \\[2ex] | |||
&= \frac{1}{2}{1+z^3}^\frac{2}{3} + C | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 16:15, 7 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int\{u}^-\frac{1}{3}du \\[2ex] &= -\frac{1}{3}(\frac{3}{2}{u}^\frac{2}{3}) = \frac{3}{6}{u}^2/3 \\[2ex] &= -\cos{(u)} + C \\[2ex] &= \frac{1}{2}{1+z^3}^\frac{2}{3} + C \end{align} }