5.5 The Substitution Rule/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
\int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int{u}^{-\frac{1}{3}}du \\[2ex] | \int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int{u}^{-\frac{1}{3}}du \\[2ex] | ||
&= -\frac{1}{3}(\frac{3}{2}{u}^\frac{2}{3}) = \frac{3}{6}{u}^2/3 \\[2ex] | &= -\frac{1}{3}(\frac{3}{2}{u}^\frac{2}{3}) = \frac{3}{6}{u}^{2/3} \\[2ex] | ||
&= -\cos{(u)} + C \\[2ex] | &= -\cos{(u)} + C \\[2ex] | ||
&= \frac{1}{2}{1+z^3}^\frac{2}{3} + C | &= \frac{1}{2}{1+z^3}^\frac{2}{3} + C |
Revision as of 16:27, 7 September 2022