5.5 The Substitution Rule/51: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{2} {u^{25}} du = \frac{1}{26}{u^{26}} &= \cfrac{(x-1)^{26}} {26}\bigg|_{0}^{2} = \cfrac{(2-1)^{26}} {26} - \cfrac {(0-1)^{26}} {26} = 0 \\[2ex] | \int_{0}^{2} {u^{25}} du = \frac{1}{26}{u^{26}} &= \cfrac{(x-1)^{26}} {26}\bigg|_{0}^{2} = \cfrac{(2-1)^{26}} {26} - \cfrac {(0-1)^{26}} {26} = \cfrac{1}^{26} {26} - \cfrac{-1}^{26} {26} = 0 \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 17:33, 7 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{0}^{2} {u^{25}} du = \frac{1}{26}{u^{26}} &= \cfrac{(x-1)^{26}} {26}\bigg|_{0}^{2} = \cfrac{(2-1)^{26}} {26} - \cfrac {(0-1)^{26}} {26} = \cfrac{1}^{26} {26} - \cfrac{-1}^{26} {26} = 0 \\[2ex] \end{align} }