6.2 Volumes/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex]
\pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex]


\pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 = \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \\
&= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 = \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \\[2ex]


\pi\left[\frac{10}{15}-\frac{3}{15}\right] = \frac{7\pi}{15}
\pi\left[\frac{10}{15}-\frac{3}{15}\right] = \frac{7\pi}{15}

Revision as of 02:56, 12 September 2022