5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tag: Manual revert |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\ | <math> | ||
\begin{algin} | |||
\int\frac{x^3-2\sqrt{x}}{x}dx &= \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx = | |||
\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx = | |||
\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C | \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C | ||
\end{align} | |||
</math> | </math> |
Revision as of 17:27, 13 September 2022
Failed to parse (unknown function "\begin{algin}"): {\displaystyle \begin{algin} \int\frac{x^3-2\sqrt{x}}{x}dx &= \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx = \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C \end{align} }