5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 11: Line 11:
<math>
<math>


\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha  
\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\frac{1}{cos^2\alpha}d\alpha =


\cos^2x+sin^2x=1
\int\sec^2\alpha \,d\alpha =
 
\int\frac{1}{cos^2x}dx =
 
\int\sec^2xdx =


\tan{x}+C
\tan{x}+C

Revision as of 17:49, 13 September 2022


Note:


Or,

Note: