5.5 The Substitution Rule/65: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{1}^{2} x \sqrt{x-1} dx &= \int_{0}^{1} u+1 \sqrt{u} | \int_{1}^{2} x \sqrt{x-1} dx &= \int_{0}^{1} u+1 \sqrt{u}\,du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du \\[2ex] | ||
&= \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] | &= \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] | ||
&= \frac{16}{15}\\[2ex] | &= \frac{16}{15}\\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 22:54, 13 September 2022