5.5 The Substitution Rule/65: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{1}^{2} x \sqrt{x-1}\,dx &= \int_{0}^{1} (u+1) \sqrt{u}\,du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} (u^ \frac{3}{2} + \sqrt{u}) , | \int_{1}^{2} x \sqrt{x-1}\,dx &= \int_{0}^{1} (u+1) \sqrt{u}\,du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} (u^ \frac{3}{2} + \sqrt{u}) ,\du \\[2ex] | ||
&= \frac{2}{5} (u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2})\bigg| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] | &= \frac{2}{5} (u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2})\bigg| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] | ||
&= \frac{16}{15}\\[2ex] | &= \frac{16}{15}\\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 23:02, 13 September 2022
Failed to parse (unknown function "\du"): {\displaystyle \begin{align} \int_{1}^{2} x \sqrt{x-1}\,dx &= \int_{0}^{1} (u+1) \sqrt{u}\,du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} (u^ \frac{3}{2} + \sqrt{u}) ,\du \\[2ex] &= \frac{2}{5} (u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2})\bigg| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] &= \frac{16}{15}\\[2ex] \end{align} }