5.5 The Substitution Rule/65: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{1}^{2} (x \sqrt{x-1}\,)\;dx &= \int_{0}^{1} ((u+1) \sqrt{u})\;du = \int_{0}^{1} (u^ \frac{3}{2} + u^ \frac{1}{2};du \\[2ex] | \int_{1}^{2} (x \sqrt{x-1}\,)\;dx &= \int_{0}^{1} ((u+1) \sqrt{u})\;du = \int_{0}^{1} (u^ \frac{3}{2} + u^ \frac{1}{2})\;du \\[2ex] | ||
&= (\frac{2}{5} u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2})\bigg| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] | &= (\frac{2}{5} u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2})\bigg| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] | ||
&= \frac{16}{15}\\[2ex] | &= \frac{16}{15}\\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 23:11, 13 September 2022