5.5 The Substitution Rule/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
\begin{align} | \begin{align} | ||
\int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2) | \int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}\left(a+bx^2)\rightdx = \frac{1}{3}\int \frac{1}{\sqrt{u}}du = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)})} \\[2ex] | ||
&= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] | &= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] |
Revision as of 23:13, 13 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}\left(a+bx^2)\rightdx = \frac{1}{3}\int \frac{1}{\sqrt{u}}du = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)})} \\[2ex] &= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] &= -\cos{(u)} + C \\[2ex] &= -\cos{(\ln{(x)})} + C \end{align} }