5.5 The Substitution Rule/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
\begin{align} | \begin{align} | ||
\int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2)\;dx = | \int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2)\;dx = \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2\;dx)\ \\[2ex] | ||
&= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] | &= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] |
Revision as of 23:23, 13 September 2022