5.4 Indefinite Integrals and the Net Change Theorem/23: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\int_{-1}^{0}(2x-e^x)dx &=\left[\frac{2x^2}{2}-e^x\right]_{-1}^{0} \\[2ex] | \int_{-1}^{0}(2x-e^x)dx &=\left[\frac{2x^2}{2}-e^x\right]_{-1}^{0} \\[2ex] | ||
&= [0-e^{0}]-[(-1)^2-e^{-1}] \\[2ex] | &= [0^{2}-e^{0}]-[(-1)^2-e^{-1}] \\[2ex] | ||
&=-1-\left(1-\frac{1}{e}\right) \\[2ex] | &=-1-\left(1-\frac{1}{e}\right) \\[2ex] | ||
&=\frac{1}{e}-2 | &=\frac{1}{e}-2 |
Revision as of 15:00, 21 September 2022