5.4 Indefinite Integrals and the Net Change Theorem/33: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
\int_{1}^{4}\sqrt{\frac{5}{x}}dy &= \int_{1}^{4}\frac{\sqrt{5}}{\sqrt{x}}dx = 5^\frac{1}{2}\int_{1}^{4}x^{-\frac{1}{2}}dx\\[2ex] | \int_{1}^{4}\sqrt{\frac{5}{x}}dy &= \int_{1}^{4}\frac{\sqrt{5}}{\sqrt{x}}dx = 5^\frac{1}{2}\int_{1}^{4}x^{-\frac{1}{2}}dx\\[2ex] | ||
&= 2\sqrt{5}x^{\frac{1}{2} | &= 2\sqrt{5}x^{\frac{1}{2}}\bigg|_{1}^{4} \\[2ex] | ||
&= 2\sqrt{5\ | &= 2\sqrt{5}\sqrt{4}-2\sqrt{5}{\sqrt{1}} \\[2ex] | ||
&= 2\sqrt{20}-2\sqrt{5} = 4\sqrt{5}-2\sqrt{5} = 2\sqrt{5} | &= 2\sqrt{20}-2\sqrt{5} = 4\sqrt{5}-2\sqrt{5} = 2\sqrt{5} | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 15:28, 21 September 2022