5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta  
\int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta  
&= \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta  
&= \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta  
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta \\[2ex]


& =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
& =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
Line 16: Line 17:


<math>
<math>
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta
</math>
</math>

Revision as of 16:02, 21 September 2022