5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
&= \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta  
&= \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta  
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta \\[2ex]
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta \\[2ex]
&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right]


&= \tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
&= \tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
Line 13: Line 15:
</math>
</math>


&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right] - left[\tan{0} + 0\right] \\[2ex]
&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right]  
 
- left[\tan{0} + 0\right] \\[2ex]

Revision as of 16:05, 21 September 2022

&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right]

- left[\tan{0} + 0\right] \\[2ex]