5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta \\[2ex]
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta \\[2ex]


&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right]  
&= \tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]


&= \tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right] - \left[\tan{0} + 0\right] \\[2ex]


&= 1+\frac{\pi}{4}
&= 1+\frac{\pi}{4}
Line 14: Line 14:
\end{align}
\end{align}
</math>
</math>
&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right]
- left[\tan{0} + 0\right] \\[2ex]

Revision as of 16:05, 21 September 2022