5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math>
<math>
= <math>\int_{1}^{64}\frac{1}{x^{1/2}}</math> + <math>\int_{1}^{64}\frac{x^{1/3}}{x^{1/2}}</math>
 
\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math>
= \int_{1}^{64}\left(\frac{1}{x^{1/2}} + \frac{x^{1/3}}{x^{1/2}}\right)dx
 
</math>


= <math>\int_{1}^{64}x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}</math> = <math>\int_{1}^{64}x^{-\frac{1}{2}}+x^{-\frac{1}{6}}</math>
= <math>\int_{1}^{64}x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}</math> = <math>\int_{1}^{64}x^{-\frac{1}{2}}+x^{-\frac{1}{6}}</math>

Revision as of 16:11, 21 September 2022

= \int_{1}^{64}\left(\frac{1}{x^{1/2}} + \frac{x^{1/3}}{x^{1/2}}\right)dx

</math>

= =

Add one to the exponents and divide by the new exponent

= =

= =

=

= =

=