5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math> | <math> | ||
= | |||
\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math> | |||
= \int_{1}^{64}\left(\frac{1}{x^{1/2}} + \frac{x^{1/3}}{x^{1/2}}\right)dx | |||
</math> | |||
= <math>\int_{1}^{64}x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}</math> = <math>\int_{1}^{64}x^{-\frac{1}{2}}+x^{-\frac{1}{6}}</math> | = <math>\int_{1}^{64}x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}</math> = <math>\int_{1}^{64}x^{-\frac{1}{2}}+x^{-\frac{1}{6}}</math> |
Revision as of 16:11, 21 September 2022
= \int_{1}^{64}\left(\frac{1}{x^{1/2}} + \frac{x^{1/3}}{x^{1/2}}\right)dx
</math>
= =
Add one to the exponents and divide by the new exponent
= =
= =
=
= =
=