5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx = \int_{1}^{64}\left(\frac{1}{x^{1/2}} + \frac{x^{1/3}}{x^{1/2}}\right)dx
\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx = \int_{1}^{64}\left(\frac{1}{x^{1/2}} + \frac{x^{1/3}}{x^{1/2}}\right)dx
= \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}(x^{-\frac{1}{2}}+x^{-\frac{1}{6}})dx
= \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}\left(x^{-\frac{1}{2}}+x^{-\frac{1}{6}}\right)dx


</math>
</math>

Revision as of 16:17, 21 September 2022

Add one to the exponents and divide by the new exponent

= =

= =

=

= =

=