5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx = \int_{1}^{64}\left(\frac{1}{x^{1/2}} + \frac{x^{1/3}}{x^{1/2}}\right)dx | \int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx = \int_{1}^{64}\left(\frac{1}{x^{1/2}} + \frac{x^{1/3}}{x^{1/2}}\right)dx | ||
= \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}(x^{-\frac{1}{2}}+x^{-\frac{1}{6}})dx | = \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}\left(x^{-\frac{1}{2}}+x^{-\frac{1}{6}}\right)dx | ||
</math> | </math> |
Revision as of 16:17, 21 September 2022
Add one to the exponents and divide by the new exponent
= =
= =
=
= =
=