5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
= \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}\left(x^{-\frac{1}{2}}+x^{-\frac{1}{6}}\right)dx | = \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}\left(x^{-\frac{1}{2}}+x^{-\frac{1}{6}}\right)dx | ||
= \int_{1}^{64}\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}} = \int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6} | |||
</math> | |||
=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math> | =<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math> |
Revision as of 16:18, 21 September 2022
= =
=
= =
=