5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
&= 2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64} \\[2ex]
&= 2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64} \\[2ex]


&= \left[2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6}\right] - \left[(2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})\right]
&= \left[2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6}\right] - \left[(2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})\right] \\[2ex]
 
&= \frac{256}{5}


\end{align}
\end{align}
</math>
</math>
= <math>2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6} - (2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})</math>
= <math>16+38.4 - (2+1.2)</math>
= <math>54.4 - 3.2</math>
= <math>51.2</math>
= <math>\frac{256}{5}</math>

Revision as of 16:24, 21 September 2022