5.4 Indefinite Integrals and the Net Change Theorem/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\begin{align}\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt&=\int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt\\[2ex]&=\tan^{-1}{t}\bigg|_{0}^{\frac{1}{\sqrt{3}}}=\tan(\frac{1}{\sqrt{3}})^{-1}-[tan(0)^{-1}]\\[2ex]&=\frac{\pi}{6}-0=\frac{\pi}{6} | <math>\begin{align}\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt&=\int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt\\[2ex]&=\tan^{-1}{(t)}\bigg|_{0}^{\frac{1}{\sqrt{3}}}=\tan(\frac{1}{\sqrt{3}})^{-1}-[tan(0)^{-1}]\\[2ex]&=\frac{\pi}{6}-0=\frac{\pi}{6} | ||
\end{align}</math> | \end{align}</math> |
Revision as of 16:30, 21 September 2022