5.4 Indefinite Integrals and the Net Change Theorem/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt &= \int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt \\[2ex] | \int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt &= \int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt \\[2ex] | ||
&=\arctan{(t)}\bigg|_{0}^{\frac{1}{\sqrt{3}}} = \arctan(\frac{1}{\sqrt{3}})-[\arctan(0) | &=\arctan{(t)}\bigg|_{0}^{\frac{1}{\sqrt{3}}} = \arctan\left(\frac{1}{\sqrt{3}}\right)-[\arctan(0)] \\[2ex] | ||
&=\frac{\pi}{6}-0=\frac{\pi}{6} | &=\frac{\pi}{6}-0=\frac{\pi}{6} |
Revision as of 16:32, 21 September 2022