5.5 The Substitution Rule/61: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
= <math>\frac{3}{2}\sqrt[3]{1+2x}\bigg|_{0}^{13}</math> | = <math>\frac{3}{2}\sqrt[3]{1+2x}\bigg|_{0}^{13}</math> | ||
= <math>\frac{3}{2}\sqrt[3]{1+2x* 13}-\frac{3}{2}\sqrt[3]{1+2*0}</math> | = <math>\frac{3}{2}\sqrt[3]{1+2x* 13}-\frac{3}{2}\sqrt[3]{1+2*0}</math> | ||
= <math>\ 3 </math> | = <math>\ 3 </math> \\[2ex] | ||
<math> | |||
\int_{0}^{13}\frac{dx}{\sqrt[3]{(1+2x)^2}}\,dx | |||
</math> | |||
<math> | |||
\begin{align} | |||
u &= 1+2x \\[2ex] | |||
du &= 2dx \\[2ex] | |||
\frac{1}{2}du &= dx \\[2ex] | |||
\end{align} | |||
</math> | |||
New upper limit: <math>\pi = 1+2(13) = 27</math><br> | |||
New lower limit: <math>0 = 1+2(0) = 1</math> | |||
<math> | |||
\begin{align} | |||
\int_{0}^{13}\frac{dx}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex] | |||
&= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex] | |||
&= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex] | |||
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex] | |||
&= 0 | |||
\end{align} | |||
</math> |
Revision as of 03:53, 22 September 2022
= = = = = = = = = \\[2ex]
New upper limit:
New lower limit: