5.5 The Substitution Rule/61: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 34: | Line 34: | ||
\int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex] | \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex] | ||
&= \int_{1}^{27}\frac{1}{\sqrt[3]{( | &= \int_{1}^{27}\frac{1}{\sqrt[3]{(u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex] | ||
&= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex] | &= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex] | ||
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex] | &= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex] |
Revision as of 04:03, 22 September 2022
= = = = = = = = = \\[2ex]
New upper limit:
New lower limit: