5.5 The Substitution Rule/61: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 25: | Line 25: | ||
&= \int_{1}^{27}\frac{1}{\sqrt[3]{u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex] | &= \int_{1}^{27}\frac{1}{\sqrt[3]{u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex] | ||
&= \frac{1}{2}\frac{{u}^{1/3}}{\frac{1}{3}}\bigg|_{1}^{27} = \frac{3}{2}{u}^{1/3}\bigg|_{1}^{27}\\[2ex] | &= \frac{1}{2}\frac{{u}^{1/3}}{\frac{1}{3}}\bigg|_{1}^{27} = \frac{3}{2}{u}^{1/3}\bigg|_{1}^{27}\\[2ex] | ||
&= \frac{ | &= \frac{3}{2}{(27)}^{1/3} - \frac{3}{2}{(1)}^{1/3} \\[2ex] | ||
&= | &= 3 | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 04:18, 22 September 2022
New upper limit:
New lower limit: