5.4 Indefinite Integrals and the Net Change Theorem/31: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
Line 5: Line 5:


\int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx=\int_{0}^{1}\left(x^{\frac{4}{3}}+x^{\frac{5}{4}}\right)dx \\[2ex]
\int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx=\int_{0}^{1}\left(x^{\frac{4}{3}}+x^{\frac{5}{4}}\right)dx \\[2ex]
&= \left(\frac{3x^{\frac{7}{3}}{7}+\frac{4x^{\frac{9}{4}}{9}\right)\bigg|_{0}^{1} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 18:48, 22 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx=\int_{0}^{1}\left(x^{\frac{4}{3}}+x^{\frac{5}{4}}\right)dx \\[2ex] &= \left(\frac{3x^{\frac{7}{3}}{7}+\frac{4x^{\frac{9}{4}}{9}\right)\bigg|_{0}^{1} \\[2ex] \end{align} }