5.5 The Substitution Rule/5: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 20: Line 20:
&= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C
&= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C


&= \frac{-1}{4}\cos^{4}{(\theta)} + C
 


\end{align}
\end{align}
</math>
</math>
&= \frac{-1}{4}\cos^{4}{(\theta)} + C

Revision as of 19:46, 22 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} &= \-int u^{3}du \\[2ex] &= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C \end{align} }

&= \frac{-1}{4}\cos^{4}{(\theta)} + C