5.5 The Substitution Rule/5: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
\begin{align}
\begin{align}
\int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} &= \-int u^{3}du \\[2ex]
\int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} &= \-int u^{3}du \\[2ex]
&= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C




Line 25: Line 23:
</math>
</math>


&= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C
&= \frac{-1}{4}\cos^{4}{(\theta)} + C
&= \frac{-1}{4}\cos^{4}{(\theta)} + C

Revision as of 19:46, 22 September 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} &= \-int u^{3}du \\[2ex] \end{align} }

&= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C &= \frac{-1}{4}\cos^{4}{(\theta)} + C