5.5 The Substitution Rule/11: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:


\int (x+1)\sqrt{2x+x^{2}}dx = \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex]
\int (x+1)\sqrt{2x+x^{2}}dx = \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex]
&= \frac{1]{2}\left(\frac{2u^{3}{2}}{3})\right + C


&= \frac{1}{3}\(u)^{\frac{3}{2}} + C
&= \frac{1}{3}\(u)^{\frac{3}{2}} + C
Line 26: Line 28:
\end{align}
\end{align}
</math>
</math>
&= \frac{1]{2}\left(\frac{2u^{3}{2}}{3})\right + C

Revision as of 21:16, 22 September 2022



Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int (x+1)\sqrt{2x+x^{2}}dx = \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] &= \frac{1]{2}\left(\frac{2u^{3}{2}}{3})\right + C &= \frac{1}{3}\(u)^{\frac{3}{2}} + C \end{align} }